Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 98(2): 601-618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427484

RESUMO

Background: Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPß1, a surface receptor that triggers amyloid-ß(Aß) phagocytosis via TYROBP. Objective: To analyze the impact of this copy-number variant in SIRPß1 expression and how it affects AD molecular etiology. Methods: Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPß1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results: The insertion alters the SIRPß1 protein isoform landscape compromising its ability to bind oligomeric Aß and its affinity for TYROBP. SIRPß1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aß ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPß1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions: The SIRPß1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aß. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPß1 structural variant might be considered as a potential modulator of this causative pathway.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Receptores de Superfície Celular , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Microglia/metabolismo , Fagocitose , Receptores de Superfície Celular/metabolismo
2.
Bioorg Med Chem Lett ; 92: 129385, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37339719

RESUMO

The c-MYC oncogene transcription factor has been implicated in cell cycle regulation controlling cell growth and proliferation. It is tightly regulated in normal cells, but has been shown to be deregulated in cancer cells, and is thus an attractive target for oncogenic therapies. Building upon previous SAR, a series of analogues containing benzimidazole core replacements were prepared and evaluated, leading to the identification of imidazopyridazine compounds that were shown to possess equivalent or improved c-MYC HTRF pEC50 values, lipophilicity, solubility, and rat pharmacokinetics. The imidazopyridazine core was therefore determined to be superior to the original benzimidazole core and a viable alternate for continued lead optimization and medicinal chemistry campaigns.


Assuntos
Aminopiridinas , Proteínas Proto-Oncogênicas c-myc , Ratos , Animais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Benzimidazóis
3.
Structure ; 30(6): 793-802.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35395178

RESUMO

DNMT1 maintains the parental DNA methylation pattern on newly replicated hemimethylated DNA. The failure of this maintenance process causes aberrant DNA methylation that affects transcription and contributes to the development and progression of cancers such as acute myeloid leukemia. Here, we structurally characterized a set of newly discovered DNMT1-selective, reversible, non-nucleoside inhibitors that bear a core 3,5-dicyanopyridine moiety, as exemplified by GSK3735967, to better understand their mechanism of inhibition. All of the dicyanopydridine-containing inhibitors examined intercalate into the hemimethylated DNA between two CpG base pairs through the DNA minor groove, resulting in conformational movement of the DNMT1 active-site loop. In addition, GSK3735967 introduces two new binding sites, where it interacts with and stabilizes the displaced DNMT1 active-site loop and it occupies an open aromatic cage in which trimethylated histone H4 lysine 20 is expected to bind. Our work represents a substantial step in generating potent, selective, and non-nucleoside inhibitors of DNMT1.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Sítios de Ligação , Domínio Catalítico , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo
4.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34790902

RESUMO

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Animais , Azacitidina/farmacologia , DNA/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Decitabina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
5.
Haematologica ; 106(7): 1979-1987, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32586904

RESUMO

Pharmacological induction of fetal hemoglobin (HbF) expression is an effective therapeutic strategy for the management of beta-hemoglobinopathies such as sickle cell disease. DNA methyltransferase (DNMT) inhibitors 5-azacytidine (5-aza) and 5-aza-2'-deoxycytidine (decitabine) have been shown to induce fetal hemoglobin expression in both preclinical models and clinical studies, but are not currently approved for the management of hemoglobinopathies. We report here the discovery of a novel class of orally bioavailable DNMT1-selective inhibitors as exemplified by GSK3482364. This molecule potently inhibits the methyltransferase activity of DNMT1, but not DNMT family members DNMT3A or DNMT3B. In contrast with cytidine analog DNMT inhibitors, the DNMT1 inhibitory mechanism of GSK3482364 does not require DNA incorporation and is reversible. In cultured human erythroid progenitor cells (EPCs), GSK3482364 decreased overall DNA methylation resulting in de-repression of the gamma globin genes HBG1 and HBG2 and increased HbF expression. In a transgenic mouse model of sickle cell disease, orally administered GSK3482364 caused significant increases in both HbF levels and in the percentage HbF-expressing erythrocytes, with good overall tolerability. We conclude that in these preclinical models, selective, reversible inhibition of DNMT1 is sufficient for the induction of HbF, and is well-tolerated. We anticipate that GSK3482364 will be a useful tool molecule for the further study of selective DNMT1 inhibition both in vitro and in vivo.


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Animais , Azacitidina/farmacologia , Metilação de DNA , Hemoglobina Fetal/genética , Camundongos , gama-Globinas/genética
6.
J Med Chem ; 62(20): 9217-9235, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31566384

RESUMO

One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission. Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with extremely fast-killing properties.


Assuntos
Antimaláricos/farmacologia , Artemisininas/química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/metabolismo , Artemisininas/metabolismo , Artemisininas/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Humanos , Concentração Inibidora 50 , Mutagênese Sítio-Dirigida , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Solubilidade , Relação Estrutura-Atividade , Tiazóis/química
8.
J Med Chem ; 60(16): 6880-6896, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28806082

RESUMO

Since the appearance of resistance to the current front-line antimalarial treatments, ACTs (artemisinin combination therapies), the discovery of novel chemical entities to treat the disease is recognized as a major global health priority. From the GSK antimalarial set, we identified an aminoxadiazole with an antiparasitic profile comparable with artemisinin (1), with no cross-resistance in a resistant strains panel and a potential new mode of action. A medicinal chemistry program allowed delivery of compounds such as 19 with high solubility in aqueous media, an acceptable toxicological profile, and oral efficacy. Further evaluation of the lead compounds showed that in vivo genotoxic degradants might be generated. The compounds generated during this medicinal chemistry program and others from the GSK collection were used to build a pharmacophore model which could be used in the virtual screening of compound collections and potentially identify new chemotypes that could deliver the same antiparasitic profile.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antimaláricos/farmacologia , Oxidiazóis/farmacologia , 2,2'-Dipiridil/administração & dosagem , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/farmacologia , 2,2'-Dipiridil/toxicidade , Animais , Antimaláricos/administração & dosagem , Antimaláricos/síntese química , Antimaláricos/toxicidade , Atovaquona/farmacologia , Cloroquina/farmacologia , Desenho de Fármacos , Feminino , Humanos , Hidrazinas/metabolismo , Camundongos , Testes de Mutagenicidade , Mutagênicos/metabolismo , Oxidiazóis/administração & dosagem , Oxidiazóis/síntese química , Oxidiazóis/toxicidade , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/farmacologia , Relação Estrutura-Atividade
9.
ACS Med Chem Lett ; 5(6): 657-61, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944739

RESUMO

Antiparasitic oral drugs have been associated to lipophilic molecules due to their intrinsic permeability. However, these kind of molecules are associated to numerous adverse effects, which have been extensively studied. Within the Tres Cantos Antimalarial Set (TCAMS) we have identified two small, soluble and simple hits that even presenting antiplasmodial activities in the range of 0.4-0.5 µM are able to show in vivo activity.

10.
Antimicrob Agents Chemother ; 55(12): 5740-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21968362

RESUMO

Malaria is one of the deadliest infectious diseases in the world, with the eukaryotic parasite Plasmodium falciparum causing the most severe form of the disease. Discovery of new classes of antimalarial drugs has become an urgent task to counteract the increasing problem of drug resistance. Screening directly for compounds able to inhibit parasite growth in vitro is one of the main approaches the malaria research community is now pursuing for the identification of novel antimalarial drug leads. Very recently, thousands of compounds with potent activity against the parasite P. falciparum have been identified and information about their molecular descriptors, antiplasmodial potency, and cytotoxicity is publicly available. Now the challenges are how to identify the most promising chemotypes for further development and how best to progress these compounds through a lead optimization program to generate antimalarial drug candidates. We report here the first chemical series to be characterized from one of those screenings, a completely novel chemical class with the generic name cyclopropyl carboxamides that has never before been described as having antimalarial or other pharmacological activities. Cyclopropyl carboxamides are potent inhibitors of drug-sensitive and -resistant strains of P. falciparum in vitro and show in vivo oral efficacy in malaria mouse models. In the present work, we describe the biological characterization of this chemical family, showing that inhibition of their still unknown target has very favorable pharmacological consequences but the compounds themselves seem to select for resistance at a high frequency.


Assuntos
Amidas , Antimaláricos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Amidas/uso terapêutico , Amidas/toxicidade , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Linhagem Celular , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Relação Estrutura-Atividade , Resultado do Tratamento
11.
ACS Med Chem Lett ; 2(11): 840-4, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900273

RESUMO

Rapid triaging of three series of related hits selected from the Tres Cantos Anti-Malarial Set (TCAMS) are described. A triazolopyrimidine series was deprioritized due to delayed inhibition of parasite growth. A lactic acid series has derivatives with IC50 < 500 nM in a standard Plasmodium falciparum in vitro whole cell assay (Pf assay) but shows half-lives of < 30 min in both human and murine microsomes. Compound 19, from a series of cyclopropyl carboxamides, is a highly potent in vitro inhibitor of P. falciparum (IC50 = 3 nM) and has an oral bioavailability of 55% in CD-1 mice and an ED90 of 20 mg/kg after oral dosing in a nonmyelo-depleted P. falciparum murine model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...